Hosoya polynomial of zigzag polyhex nanotorus
نویسندگان
چکیده
منابع مشابه
Hosoya polynomial of zigzag polyhex nanotorus
Abstract: The Hosoya polynomial of a molecular graph G is defined as ∑ ⊆ = ) ( } , { ) , ( ) , ( G V v u v u d G H λ λ , where d(u,v) is the distance between vertices u and v. The first derivative of H(G,λ) at λ = 1 is equal to the Wiener index of G, defined as ∑ ⊆ = ) ( } , { ) , ( ) ( G V v u v u d G W . The second derivative of ) , ( 2 1 λ λ G H at λ = 1 is equal to the hyper-Wiener index, d...
متن کاملHarary Index of Zigzag Polyhex Nanotorus
One of considerable topics in chemistry is surveying the quantitative structure-property relationship between the structure of a molecule and chemical, physical and biological properties of it(QSPR). For this purpose, the form of molecule must be coded according to numbers. A common method, for coding the molecule structure, is to assign a graph to the molecule, where the vertices are atoms of ...
متن کاملOn the Roots of Hosoya Polynomial of a Graph
Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...
متن کاملAlternating Sums in the Hosoya Polynomial Triangle
The Hosoya polynomial triangle is a triangular arrangement of polynomials where each entry is a product of two polynomials. The geometry of this triangle is a good 1 tool to study the algebraic properties of polynomial products. In particular, we find closed formulas for the alternating sum of products of polynomials such as Fibonacci polynomials, Chebyshev polynomials, Morgan-Voyce polynomials...
متن کاملThe Hosoya-Wiener Polynomial of Weighted Trees
Formulas for the Wiener number and the Hosoya-Wiener polynomial of edge and vertex weighted graphs are given in terms of edge and path contributions. For a rooted tree, the Hosoya-Wiener polynomial is expressed as a sum of vertex contributions. Finally, a recursive formula for computing the Hosoya-Wiener polynomial of a weighted tree is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Serbian Chemical Society
سال: 2008
ISSN: 0352-5139,1820-7421
DOI: 10.2298/jsc0803311e